Selected Publications

Continuity between ancient geochemistry and modern metabolism enabled by non-autocatalytic purine biosynthesis

Published in bioRxiv, 2022

A major unresolved question in the origin of life is whether there exists a continuous path from geochemical precursors to the majority of molecules in the biosphere, due in part to the autocatalytic nature of metabolic networks in modern-day organisms and high rates of extinction throughout Earth’s history. Here we simulated the emergence of ancient metabolic networks to identify a feasible path from simple geochemical precursors (e.g., phosphate, sulfide, ammonia, simple carboxylic acids, and metals) to contemporary biochemistry, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, and that non-autocatalytic phosphoryl coupling agents are sufficient to enable expansion from geochemistry to modern metabolic networks. Our model predicts distinct phases of metabolic evolution, characterized by the sequential emergence of key molecules (carboxylic acids, amino acids, sugars), purines/nucleotide cofactors (ATP, NAD+), flavins, and quinones, respectively. Early phases in the resulting expansion are associated with enzymes that are metal-dependent and structurally symmetric, consistent with models of early biochemical evolution. The production of quinones in the last phase of metabolic expansion permits oxygenic photosynthesis and the production of O2, leading to a >30% increase in biomolecules. These results reveal a feasible trajectory from simple geochemical precursors to the vast majority of core biochemistry.

Recommended citation: Goldford, J.E.,  Smith, H.B., Longo, L.M. Wing, B., & McGlynn, S.M.. Continuity between ancient geochemistry and modern metabolism enabled by non-autocatalytic purine biosynthesis. (*co-corresponding author). bioRxiv. 2022. doi: https://doi.org/10.1101/2022.10.07.511356 (submitted) http://jgoldford.github.io/files/Goldford_biorxiv_mc_2022.pdf

Protein cost minimization promotes the emergence of coenzyme redundancy

Published in PNAS, 2022

Coenzymes distribute a variety of chemical moieties throughout cellular metabolism, participating in group (e.g., phosphate and acyl) and electron transfer. For a variety of reactions requiring acceptors or donors of specific resources, there often exist degenerate sets of molecules [e.g., NAD(H) and NADP(H)] that carry out similar functions. Although the physiological roles of various coenzyme systems are well established, it is unclear what selective pressures may have driven the emergence of coenzyme redundancy. Here, we use genome-wide metabolic modeling approaches to decompose the selective pressures driving enzymatic specificity for either NAD(H) or NADP(H) in the metabolic network of Escherichia coli. We found that few enzymes are thermodynamically constrained to using a single coenzyme, and in principle a metabolic network relying on only NAD(H) is feasible. However, structural and sequence analyses revealed widespread conservation of residues that retain selectivity for either NAD(H) or NADP(H), suggesting that additional forces may shape specificity. Using a model accounting for the cost of oxidoreductase enzyme expression, we found that coenzyme redundancy universally reduces the minimal amount of protein required to catalyze coenzyme-coupled reactions, inducing individual reactions to strongly prefer one coenzyme over another when reactions are near thermodynamic equilibrium. We propose that protein minimization generically promotes coenzyme redundancy and that coenzymes typically thought to exist in a single pool (e.g., coenzyme A [CoA]) may exist in more than one form (e.g., dephospho-CoA).

Recommended citation: Goldford, J.E., George, A.B., Flamholz, A.I., & Segrè, D. Protein cost minimization promotes the emergence of coenzyme redundancy. PNAS. 2022 Mar; 119 (14) e2110787119 http://jgoldford.github.io/files/Goldford_PNAS_2022.pdf

Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism

Published in Nature Ecology & Evolution, 2019

It has been suggested that a deep memory of early life is hidden in the architecture of metabolic networks, whose reactions could have been catalyzed by small molecules or minerals before genetically encoded enzymes. A major challenge in unravelling these early steps is assessing the plausibility of a connected, thermodynamically consistent proto-metabolism under different geochemical conditions, which are still surrounded by high uncertainty. Here we combine network-based algorithms with physico-chemical constraints on chemical reaction networks to systematically show how different combinations of parameters (temperature, pH, redox potential and availability of molecular precursors) could have affected the evolution of a proto-metabolism. Our analysis of possible trajectories indicates that a subset of boundary conditions converges to an organo-sulfur-based proto-metabolic network fuelled by a thioester- and redox-driven variant of the reductive tricarboxylic acid cycle that is capable of producing lipids and keto acids. Surprisingly, environmental sources of fixed nitrogen and low-potential electron donors are not necessary for the earliest phases of biochemical evolution. We use one of these networks to build a steady-state dynamical metabolic model of a protocell, and find that different combinations of carbon sources and electron donors can support the continuous production of a minimal ancient ‘biomass’ composed of putative early biopolymers and fatty acids.

Recommended citation: Goldford, J.E., Hartman, H., Marsland R., & Segrè, D. Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism. Nature Ecology & Evolution. 2019 Nov; (3)1715-1724 http://jgoldford.github.io/files/Goldford_NatureEcoEvo_2019.pdf

Emergent simplicity in microbial community assembly

Published in Science, 2018

A major unresolved question in microbiome research is whether the complex taxonomic architectures observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly in natural ecosystems. We addressed this challenge by monitoring the assembly of hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic media. Both the community-level function and the coarse-grained taxonomy of the resulting communities are highly predictable and governed by nutrient availability, despite substantial species variability. By generalizing classical ecological models to include widespread nonspecific cross-feeding, we show that these features are all emergent properties of the assembly of large microbial communities, explaining their ubiquity in natural microbiomes.

Recommended citation: Goldford, J.E., Lu, N., Bajic, D., Estrela, S., Tikhonov M., Gorostiaga, A., Segrè, D., Mehta, P., & Sanchez, A. Emergent simplicity in microbial community assembly. Science. 2018 Aug; (361) 469-74 http://jgoldford.github.io/files/Goldford_Science_2018.pdf

Modern views of ancient metabolic networks

Published in Current Opinion in Systems Biology, 2018

Metabolism is a molecular, cellular, ecological and planetary phenomenon, whose fundamental principles are likely at the heart of what makes living matter different from inanimate one. Systems biology approaches developed for the quantitative analysis of metabolism at multiple scales can help understand metabolism's ancient history. In this review, we highlight work that uses network-level approaches to shed light on key innovations in ancient life, including the emergence of proto-metabolic networks, collective autocatalysis and bioenergetics coupling. Recent experiments and computational analyses have revealed new aspects of this ancient history, paving the way for the use of large datasets to further improve our understanding of life's principles and abiogenesis.

Recommended citation: Goldford, J.E., & Segrè, D. Modern views of ancient metabolic networks. Current Opinion in Systems Biology. 2018 Apr; (8) 117-124 http://jgoldford.github.io/files/Goldford_CurrOpin_2018.pdf

Remnants of an ancient metabolism without phosphate

Published in Cell, 2017

Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a “metabolic fossil” of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.

Recommended citation: Goldford, J.E., Hartman, H., Smith, T.F., & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell. 2017 Mar 9; 168(6): 1126-1134 http://jgoldford.github.io/files/Goldford_Cell_2017.pdf